
COINES SDK
COmmunication for INertial and Environmental Sen-
sors SDK

COINES SDK - CONFIDENTIAL
Document revision 2.9

Document release date January 2024

Document number BST-DHW-AN013

Technical reference codes n.a.

Notes Data and descriptions in this document are subject to change without notice. Prod-
uct photos and pictures are for illustration purposes only and may differ from the real
product appearance.
Confidential and under NDA

Bosch Sensortec | COINES SDK - CONFIDENTIAL 2 | 131

Contents

1 Data Protection Notice 7
1.1 BST respects your privacy . 7
1.2 Controller . 7
1.3 Collection, processing and usage of personal data . 7
1.4 User Rights . 8
1.5 Right to lodge complaint with supervisory authority: . 8
1.6 Changes to the Data Protection Notice . 8
1.7 Contact . 9
1.8 Effective date . 9

2 Introduction 10

3 Introduction to COINES 15

4 Running examples on PC side 16

5 Running examples directly on the MCU of the Application board 17

6 COINES on Nicla Sense ME 18

7 System requirements 19

8 Installation of COINES 20

9 Installation of compiler environment 21

10 Installation of COINES 23

11 Installation of compiler environment 24

12 Compiling and executing code (command line) 25

13 Cross compiling and downloading example to Application Board's microcontroller 26

14 Cross compiling and downloading example to Nicla Sense ME's microcontroller 27

15 Eclipse project for examples 28
15.1 Build project . 29
15.2 Debug project . 29

16 Overview of PC side implementation of COINES 30

17 GPIO mapping of APP2.0 shuttle board pins 31

18 GPIO mapping of APP3.0 shuttle board pins 32

19 coines_open_comm_intf 33

20 coines_close_comm_intf 34

21 coines_get_board_info 35

22 coines_set_pin_config 36

23 coines_get_pin_config 37

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 3 | 131

24 coines_set_shuttleboard_vdd_vddio_config 38

25 coines_config_i2c_bus 39

26 coines_config_spi_bus 40

27 coines_config_i2s_bus 41

28 coines_deconfig_spi_bus 42

29 coines_deconfig_i2c_bus 43

30 coines_deconfig_i2s_bus 44

31 coines_write_i2c 45

32 coines_read_i2c 46

33 coines_i2c_set 47

34 coines_i2c_get 48

35 coines_write_spi 49

36 coines_read_spi 50

37 coines_config_word_spi_bus 51

38 coines_write_16bit_spi 52

39 coines_read_16bit_spi 53

40 coines_delay_msec 54

41 coines_delay_usec 55

42 coinesAPI calls: Streaming feature 56

43 coines_config_streaming 57

44 coines_start_stop_streaming 58

45 coines_read_stream_sensor_data 59

46 coines_trigger_timer 60

47 coines_get_millis 61

48 coines_get_micro_sec 62

49 coines_attach_interrupt 63

50 coines_detach_interrupt 64

51 coines_intf_available 65

52 coines_intf_connected 66

53 coines_flush_intf 67

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 4 | 131

54 coines_read_intf 68

55 coines_write_intf 69

56 coines_get_version 70

57 coines_soft_reset 71

58 coines_read_temp_data 72

59 coines_read_bat_status 73

60 coines_ble_config 74

61 coines_set_led 75

62 coines_timer_config 76

63 coines_timer_deconfig 77

64 coines_timer_start 78

65 coines_timer_stop 79

66 coines_get_realtime_usec 80

67 coines_delay_realtime_usec 81

68 coines_attach_timed_interrupt 82

69 coines_detach_timed_interrupt 83

70 coines_echo_test 84

71 coines_shuttle_eeprom_write 85

72 coines_shuttle_eeprom_read 86

73 coines_yield 87

74 coines_execute_critical_region 88

75 coines_scan_ble_devices 89

76 Simple data logging 90

77 Data plotting and visualization 92

78 Media Transfer Protocol (MTP) firmware for Application Board 3.0 93

79 Switching to MTP mode 97

80 Copying the files using MTP 98

81 USB/BLE DFU bootloader 99

82 USB DFU 100

83 BLE DFU 101

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 5 | 131

84 Invoking the Bootloader 102
84.1 APP3.0 Board . 102
84.2 Nicla Sense ME Board . 102

85 Using the Bootloader via USB 103

86 Using the Bootloader via BLE 104

87 Updating bootloader 105
87.1 App3.0 Board . 105
87.2 Nicla Sense ME Board . 105

88 Updating DD firmware 106

89 Updating MTP firmware 107

90 Updating Coines Bridge firmware on Nicla Sense ME Board 108

91 Introduction to <tt>coinespy</tt> library 109

92 Installation 110

93 coinespy API description 111

94 coinespy API calls: Interface and board information 112
94.1 open_comm_interface . 112
94.2 close_comm_interface . 112
94.3 get_board_info . 112
94.4 scan_ble_devices . 112
94.5 echo_test . 112

95 coinespy API calls: GPIO oriented calls 114
95.1 set_pin_config . 114
95.2 get_pin_config . 114
95.3 set_shuttleboard_vdd_vddio_config . 114
95.4 set_vdd . 114
95.5 set_vddio . 114

96 coinespy API calls: Sensor communication 116
96.1 config_i2c_bus . 116
96.2 config_spi_bus . 116
96.3 deconfig_i2c_bus . 116
96.4 deconfig_spi_bus . 116
96.5 write_i2c . 116
96.6 read_i2c . 116
96.7 write_spi . 117
96.8 read_spi . 117
96.9 config_word_spi_bus . 117
96.10write_16bit_spi . 117
96.11read_16bit_spi . 118
96.12delay_milli_sec . 118
96.13delay_micro_sec . 118

97 coinespy API calls: Streaming feature 119
97.1 config_streaming . 119
97.2 start_stop_streaming . 122

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 6 | 131

97.3 read_stream_sensor_data . 122

98 coinespy API calls: Other useful APIs 123

99 Definiton of constants 124
99.1 PinDirection . 124
99.2 PinValue . 124
99.3 CommInterface . 124
99.4 I2CMode . 124
99.5 SPISpeed . 125
99.6 SPITransferBits . 125
99.7 SPIMode . 126
99.8 MultiIOPin . 126
99.9 SensorInterface . 127
99.10I2CBus . 127
99.11SPIBus . 127
99.12PinInterruptMode . 128
99.13StreamingMode . 128
99.14StreamingState . 128
99.15SamplingUnits . 129

100Error Codes 130
100.1General Error Codes . 130

101FAQ 133
101.11. I want to upgrade APP2.0/APP3.0 firmware. 133
101.22. Why GCC is chosen as the compiler? . 133
101.33. Why do you use TDM-GCC in Windows? . 133
101.44. Why do you use mingw32-make in Windows? . 133
101.55. What to do in case of any communication or initialization failure while running examples? 133
101.66. What does 'app_switch' tool do? . 133
101.77. Are libraries provided by microcontroller vendor used for COINES on MCU implementation ? 133
101.88. How is the binary file from PC downloaded to RAM or Flash memory of MCU? 133
101.99. Why is there no output in my terminal application not stream data after cross-compiling and downloading

an example on the MCU? . 134
101.1010. Why can some examples only be compiled for either PC or MCU target? 134

102Legal disclaimer 135
102.1Engineering samples . 135
102.2Product use . 135
102.3Application examples and hints . 135

103Legal disclaimer 136

104Document History and Modifications 137

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 7 | 131

1 Data Protection Notice
Bosch Sensortec GmbH (hereinafter "BST" or "We" or "Us") welcomes you to our documentation of COINES ("C←↩

Ommunication with INertial and Environmental Sensors") (referred to as "software"). We thank you for your interest in
our company and our product.

1.1 BST respects your privacy

The protection of your privacy throughout the course of processing personal data as well as the security of all business
data are important concerns to us. We process personal data that was gathered during your use of the software
confidentially and only in accordance with statutory regulations.
Data protection and information security are included in our corporate policy.

1.2 Controller

BST is the controller responsible for the processing of your data; exceptions are outlined in this data protection notice.

Our contact details are as follows :
Bosch Sensortec GmbH
Gerhard-Kindler-Strasse 9
72770 Reutlingen
GERMANY

1.3 Collection, processing and usage of personal data

Processed categories of data

No personal data is collected by us.

Principles

Personal data consists of all information related to an identified or identifiable natural person, this includes, e.g., names,
addresses, phone numbers, email addresses, contractual master data, contract accounting and payment data, which is
an expression of a person's identity.

Safeguarding and defending our rights.

Legal basis: Legitimate interest on our part for safeguarding and defending our rights.

Log files

Log files are not and will not be used.

Data processing by Operator of the Platform

We do not collect data, and it is beyond our responsibility, when data, such as E.g. username, email address and indi-
vidual device identifier are transferred to GitHub whose platform is used for this offer. GitHub’s data protection notice
can be found here.

Our employees and the companies providing services on our behalf, are obliged to confidentiality and to compliance
with the applicable data protection laws.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

https://docs.github.com/en/site-policy/privacy-policies/github-privacy-statement

Bosch Sensortec | COINES SDK - CONFIDENTIAL 8 | 131

We take all necessary technical and organizational measures to ensure an appropriate level of security and to protect
your data that are administrated by us especially from the risks of unintended or unlawful destruction, manipulation,
loss, change or unauthorized disclosure or unauthorized access. Our security measures are, pursuant to technological
progress, constantly being improved.

1.4 User Rights

To enforce your rights, please use the details provided for doing so, please ensure that an unambiguous identification of
your person is possible.

Right to information and access

You have the right to obtain confirmation from us about whether your personal data is being processed, and, if this is the
case, access to your personal data.

Right to correction and deletion

You have the right to obtain the rectification of inaccurate personal data. As far as statutory requirements are fulfilled,
you have the right to obtain the completion or deletion of your data.

This does not apply to data which is necessary for billing or accounting purposes, or which is subject to a statutory
retention period. If access to such data is not required, however, its processing is restricted (see the following).

Restriction of processing

As far as statutory requirements are fulfilled you have the right to demand for restriction of the processing of your data.

Data portability

As far as statutory requirements are fulfilled you may request to receive data that you have provided to us in a structured,
commonly used and machine-readable format or – if technically feasible –that we transfer those data to a third party.

1.5 Right to lodge complaint with supervisory authority:

You have the right to lodge a complaint with a supervisory authority. You can appeal to the supervisory authority which
is responsible for your place of residence or your state of residency or to the supervisory authority responsible for us.
This is:
State Commissioner for Data Protection and Freedom of Information

Address:
Lautenschlagerstraße 20
70173 Stuttgart, GERMANY
Postal address:
P.O. Box 10 29 32
70025 Stuttgart, GERMANY

Phone: +49 (711)/615541-0
Fax: +49 (711)/615541-15
Email: poststelle@lfdi.bwl.de

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

mailto:poststelle@lfdi.bwl.de

Bosch Sensortec | COINES SDK - CONFIDENTIAL 9 | 131

1.6 Changes to the Data Protection Notice

We reserve the right to change our security and data protection measures. In such cases, we will amend our data
protection notice accordingly. Please, therefore, notice the current version of our data protection notice, as this is
subject to changes.

1.7 Contact

If you wish to contact us, please find us at the address stated in the "Controller" section.
To assert your rights please use the following link: https://request.privacy-bosch.com/entity/RB/

To notify us about data protection incidents please use this link: https://www.bkms-system.net/bosch-dataprotection

For suggestions and complaints regarding the processing of your personal data we recommend that you contact our
data protection officer:
Data Protection Officer
Information Security and Privacy (C/ISP)
Robert Bosch GmbH
P.O. Box 30 02 20
70442 Stuttgart, GERMANY
or
Email: DPO@bosch.com

1.8 Effective date

Effective Date : 10th of October 2023

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

https://request.privacy-bosch.com/entity/RB/
https://www.bkms-system.net/bosch-dataprotection
mailto:DPO@bosch.com

Bosch Sensortec | COINES SDK - CONFIDENTIAL 10 | 131

2 Introduction
Bosch Sensortec offers a toolkit for evaluation of it’s sensor products.The toolkit consisting of 3 elements:

· A sensor specific shuttle board also known as breakout board. APP3.0 shuttle boards also known as mini shuttle
boards has smaller form factor when compared with APP2.0 shuttle board.

Figure 1 Image: APP2.0 shuttle board

{ width=300 }

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 11 | 131

Figure 2 Image: APP3.0 shuttle board

{width=350}
Fig. 1: APP2.0/3.0 shuttle board

· Application Board has a connector for the shuttle board and serves as interface translator from the sensor inter-
face (I∼2∼C or SPI) to a USB interface, allowing PC software to communicate with the sensor on the shuttle.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

https://www.bosch-sensortec.com/software-tools/tools/application-board-3-0/

Bosch Sensortec | COINES SDK - CONFIDENTIAL 12 | 131

Figure 3 Image: Application Board 2.0

{ width="300"}

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 13 | 131

Figure 4 Image: Application Board 3.0

{ width="300"} Fig. 2: Application Board 2.0/3.0
· Nicla Sense ME board combines four state-of-the-art sensors from Bosch Sensortec (BHI260AP, BMP390, BM←↩

M150 and BME688) in the Arduino ecosystem.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

https://store.arduino.cc/products/nicla-sense-me

Bosch Sensortec | COINES SDK - CONFIDENTIAL 14 | 131

Figure 5 Image: Nicla Sense ME

{ width="300"} Fig. 3: Nicla Sense ME
· On the PC side, Bosch Sensortec provides the software packages Development Desktop 2.0 and COINES to connect

to the sensor on the Application Board.
· Development Desktop 2.0 provides a GUI which allows to configure the sensor, plot and export streamed sensor

data.
· COINES provides a C based interface, which allows to communicate with the sensor using the SensorAPI from

Bosch Sensortec on the PC side.
· Starting from COINES v2.0, user has an option to cross-compile the example and run it directly on the Application

Board’s microcontroller.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 15 | 131

3 Introduction to COINES
COINES ("∗∗CO∗∗mmunication with ∗∗IN∗∗ertial and ∗∗E∗∗nvironmental ∗∗S∗∗ensors") provides a low-level interface
to Bosch Sensortec’s Application Board. The user can access Bosch Sensortec’s MEMS sensors through a C interface.
COINES can be used with SensorAPI of the sensor. SensorAPI is available at https://github.com/BoschSensortec.
The source code of example applications and SensorAPI are provided with the COINES library as a package. The user
can modify, compile and run the sample applications.
COINES can be used to see how to use the SensorAPI in an embedded environment and allows convenient data logging.
The full working environment consists of:

· A Bosch Sensortec MEMS sensor on a shuttle board mounted on the socket of Bosch Sensortec’s application board
APP2.0/APP3.0

· Windows or Linux PC to which the Application Board is connected via USB
· COINES software release as found here: http://www.bosch-sensortec.com

· C compiler is also required (details see below)

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

https://github.com/BoschSensortec
http://www.bosch-sensortec.com

Bosch Sensortec | COINES SDK - CONFIDENTIAL 16 | 131

4 Running examples on PC side
When compiling the examples for PC side, the COINES layer provides an abstraction of the embedded environment on
the host side. COINES library provides read and write functions for I∼2∼C and SPI on PC side. These functions receive
the arguments of the user input (i.e. what register address to read from) and tunnel them through the USB connection
to the Application Board, where they are fed into the embedded I∼2∼C and SPI functions and are executed to access
the sensor Any result or response from those functions is tunneled back to the PC side and provided to the example
application.
This approach allows easy and flexible programming and offers the possibility to integrate the example code into other
applications or add advanced logging options. The drawback is that in this mode the code is not executed in real time,
as it runs on a multi-tasking operating system To overcome this drawback, the examples can also be run on the MCU
side (see next section).

Figure 6 Image: running example on PC side

Fig. 4: Working principle: running example on PC side

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 17 | 131

5 Running examples directly on the MCU of the Application board
The examples can also be cross-compiled on PC side and downloaded into the memory of the Application board and
executed there. The user can choose to download the created binary into the flash memory or into the RAM (if the binary
is not too big).
Important is that the example is placed in a location in the flash memory other than where the default firmware is stored.
The example is executed with a specific command, allowing to jump to the start address of the complied example
from the default firmware. As the firmware itself is not overwritten, the board always returns to its default state after a
power-off-power-on cycle.
In this configuration the COINES layer provides a simple abstraction on top of the MCU BSP (i.e. board level support
layer of the microcontroller). Any printf command will now not output to the console, but rather to the USB connection,
which appears as virtual COM port on PC side.
This mode allows to also perform many time-critical operations on the sensor, such as fast reading of FIFO content at
high data rates.

Figure 7 Image: running example on the MCU of the Application Board

Fig. 5: Working principle: running example on the MCU of the Application Board

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 18 | 131

6 COINES on Nicla Sense ME
COINES can be used to access the onboard Bosch sensors with the Nicla Sense ME. The working environment con-
sists of windows or Linux PC to which the Nicla Sense ME Board is connected via USB. For details refer to section
../accessing_the_sensor_on_application_board/introduction_to_coines.md "2".

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 19 | 131

7 System requirements
COINES should be usable on any recent PC or laptop system which has at least a performance as an “office PC”. The
hardware should provide a USB 2.0 interface.
COINES can run on recent versions of Windows and Linux.
Tested with following Operating Systems:

· Windows 7,10
· Debian based - Ubuntu 14.04, 16.04, 18.04, Debian Jessie/Stretch
· Redhat based - CentOS 7 ,Fedora 27

· Raspbian (Raspberry Pi 3 hardware)

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 20 | 131

8 Installation of COINES
· Download the latest version of COINES from Bosch Sensortec's website in the "Downloads" section.
· Run the Installer.
· Accept the End User License Agreement and click Next.
· Click Install to start Installation.
· Click Start --> All programs --> COINES --> examples --> respective sensors to view examples.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 21 | 131

9 Installation of compiler environment
COINES C examples can be built using GNU C compiler (GCC). There are various distributions of GCC. TDM-GCC is
easy to install and hence preferred for COINES. TDM GCC is based on MinGW GCC.
If you have already installed GCC (MinGW/Cygwin/MSYS2 GCC) and added to 'PATH' environmental variable, you can
skip compiler installation.

1. Download the TDM32/TDM64 bundle (link). Use TDM32 bundle if your Windows OS is 32-bit and TDM64
bundle if 64-bit.

2. Start the Installer. Ensure that the option Check for updated files on the TDM GCC server is unchecked. Click Create
and proceed with the installation.

3. If you intend to do run the COINES example on Application Board's microcontroller, install the latest version of GNU
Embedded Toolchain for ARM for Windows. Make sure you have checked 'Add path to environmental variable'

Figure 8 Image: TDM-GCC installation dialog

Fig. 6: TDM-GCC installation dialog

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

http://tdm-gcc.tdragon.net/
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads

Bosch Sensortec | COINES SDK - CONFIDENTIAL 22 | 131

Figure 9 Image: GNU ARM Toolchain installation

Fig. 7: GNU ARM Toolchain installation

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 23 | 131

10 Installation of COINES
· Download the installer.
· Use the command cd to go to the directory where the installer is located and make the installer executable:

· chmod +x coines_vX.Y.sh

· Ensure that you are connected to the Internet before running the installer, which is executed like this:
· ./coines_vX.Y.sh

· Accept the End User License agreement.
· The installer will prompt you if the required dependencies/packages are not installed (This step requires root privi-

leges).

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 24 | 131

11 Installation of compiler environment
On a Debian or Redhat based Linux distro, the installer prompts for installation of missing dependencies, gcc, make and
libusb-dev packages. If due to some reason installation fails,the user can manually install the dependencies.

· Debian based distros - gcc, make, libusb-1.0-0-dev, dfu-util
· Redhat based distros - gcc, make, libusbx-devel, dfu-util
· MacOS - libusb, dfu-util
If you intend to run the COINES example on Application Board's microcontroller, download the latest version of G←↩

NU Embedded Toolchain for ARM for Linux and extract the package. Add the compiler to PATH variable by editing
$HOME/.bashrc or similar file like /etc/profile or /etc/environment.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads

Bosch Sensortec | COINES SDK - CONFIDENTIAL 25 | 131

12 Compiling and executing code (command line)
1. Connect the Application Board board via USB, with the sensor shuttle board mounted.
2. Open the command prompt or the terminal.
3. Use the command cd to go to the directory where the example that is to be built is located.
4. Type 'mingw32-make' (TDM-GCC/MinGW) or 'make' (Linux/Cygwin/MSYS2/MacOS).
5. Run the example and see the output.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 26 | 131

13 Cross compiling and downloading example to Application Board's
microcontroller

1. Make sure that GNU Embedded Toolchain for ARM is installed on your PC and added to evironmental variable PATH.
2. Connect the Application board via USB, with the sensor shuttle board mounted.
3. Open the command prompt or the terminal.
4. Use the command cd to go to the directory where the example that is to be built is located.
5. Type mingw32-make TARGET=MCU_APP20 download. Other available options are:

Cross-compile for APP2.0 board mingw32-make TARGET=MCU_APP20

Download example to APP2.0 MCU RAM ∗∗mingw32-make LOCATION=RAM TARGET=MCU_APP20
download∗∗

Download example to APP2.0 MCU FLASH ∗∗mingw32-make LOCATION=FLASH TARGET=MCU_APP20
download∗∗

Download example to APP3.0 MCU RAM ∗∗mingw32-make LOCATION=RAM TARGET=MCU_APP30
download∗∗

Download example to APP3.0 MCU FLASH∗∗∗ ∗∗mingw32-make LOCATION=FLASH TARGET=MCU_APP30
download

Download example to APP3.0 MCU FLASH ∗∗mingw32-make LOCATION=FLASH TARGET=MCU_APP30
download∗∗

Compile for PC (Default) ∗∗mingw32-make TARGET=PC∗∗
Run an example already residing in APP2.0 Flash
memory

∗∗mingw32-make run∗∗

Linux/MacOS/Cygwin/MSYS2 users can use make.
NOTE: Downloading COINES example to APP3.0 Flash memory will overwrite default firmware.

1. Use a Serial Terminal application to view output.
· Windows - PuTTY, HTerm,etc.,
· Linux - cat command. Eg: cat /dev/ttyACM0
· macOS - screen command. Eg: screen /dev/tty.usbmodem9F31

2. For bluetooth, use Serial Bluetooth terminal.

Note:

· Some examples may not compile for both PC and MCU target. Please refer to the example documentation or simply
the example name (e.g. examples that can only be compiled for the PC are named with a following '_pc').

· The binary on the MCU will be executed once the serial port is opened. The port must be opened including DTR
signal set, otherwise the binary will not be executed. Some terminal programs such as HTerm allow explicit setting
of the DTR signal.

· For printing over APP3.0 bluetooth interface, use fprintf(bt_w,...).

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads
https://play.google.com/store/apps/details?id=de.kai_morich.serial_bluetooth_terminal

Bosch Sensortec | COINES SDK - CONFIDENTIAL 27 | 131

14 Cross compiling and downloading example to Nicla Sense ME's
microcontroller

1. Make sure that GNU Embedded Toolchain for ARM is installed on your PC and added to environmental variable
PATH.

2. Connect the Nicla Sense ME board via USB.
3. Open the command prompt or the terminal.
4. Use the command cd to go to the directory where the example that is to be built is located.
5. Type mingw32-make TARGET=MCU_NICLA download . Other available options are:

Download example to NICLA MCU FLASH∗ mingw32-make LOCATION=FLASH TARGET=MCU_NICLA download

Compile for PC (Default) ∗∗mingw32-make TARGET=PC∗∗

NOTE: Only Coines Bridge example supported in v2.8.8.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads

Bosch Sensortec | COINES SDK - CONFIDENTIAL 28 | 131

15 Eclipse project for examples
· Open Eclipse
· Click File --> New --> C/C++ Project

1. Input Project name --> Uncheck use default location --> Provide the location of the example folder

Figure 10 Image: Eclipse C Project for Windows

Fig. 8: Eclipse C Project for Windows
![Image: Eclipse C Project for Linux](eclipse_project_linux.jpg)

Fig. 9: Eclipse C Project for Linux

1. Select Executable --> Empty project in Project type

2. For Windows, Select MinGW GCC as Toolchain
3. For Linux, Select Linux GCC as Toolchain

In Project Explorer window, Right click on the project created --> Click Properties --> C/C++ Build --> Tool Chain Editor
--> Select Current builder as Gnu Make Builder
· Again click on C/C++ Build

1. For Windows, Uncheck "Use default build command" and type build command as mingw32-make
2. Uncheck generate Makefiles automatically
3. Ensure Build location path is chosen from the workspace

![Image: Windows Eclipse Project Properties](eclipse_properties_windows.jpg)

Fig. 10: Windows Eclipse Project Properties

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 29 | 131

![Image: Linux Eclipse Project Properties](eclipse_properties_linux.jpg)

Fig. 11: Linux Eclipse Project Properties

1. Click Apply and Close button

15.1Build project

In Project Explorer window, Right click on the project --> Click Build Project. The executable file will be generated.

15.2Debug project

· Click on Run --> Debug As --> Local C/C++ Application
· Once launching is completed, Click on

1. Resume button to run the application
2. Terminate button to stop running the application

Figure 11 Image: Eclipse Debug Configuration

Fig. 12: Eclipse Debug Configuration

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 30 | 131

16 Overview of PC side implementation of COINES
Bosch Sensortec recommends using the SensorAPI in order to communicate with the sensors. The SensorAPI , an
abstraction layer written in C makes it much more convenient for the user to access the register map of the sensor in
order to configure certain functionality and obtain certain information from it.
For making use of the SensorAPI, three function pointers must be set to the appropriate read/write functions of the
selected bus on the system (either I∼2∼C or SPI), as well as one function pointer to a system's function causing delays
in milliseconds.
In order to execute C code using SensorAPI on a PC, the coinesAPI provides the mentioned read,write,delay functions.
These functions are wrapper functions, embedding the actual SensorAPI payloads into a transport package, sending
this via USB to the APP2.0, where the payload is translated into corresponding SPI or I∼2∼C messages and sent to the
sensor on the shuttle board. The mapping would look similar to the one below.

0

#include "bst_sensor.h"

struct bst_sensor_dev sensordev;

....

....

sensordev.dev_id = I2C_ADDR; // SPI - CS PIN

sensordev.read = coines_read_i2c; // coines_read_spi

sensordev.write = coines_write_i2c; // coines_write_spi

sensordev.delay_ms = coines_delay_msec;

Using this method, the full functionality of the SensorAPI can be used on PC side, sample code can be modified and
tested, and data can be logged in a convenient way.
This setup has the challenge of lacking the real-time capabilities known from a pure microcontroller environment. To
overcome this, the coinesAPI offers streaming functions, which allow the user to schedule data readout directly on the
microcontroller, either based on a data interrupt coming from the sensors or based on the timer of the microcontroller.
The scheduler waits for the configured interrupt (sensor interrupt or timer interrupt) and reads out areas of the register
map, which can be configured by the user.
As an example, the user could choose to read out the 6 bytes from the register map of a certain inertial sensor, containing
the sensor data of three axis (2 bytes per axis). If the user would configure for example a readout once per milliseconds,
the result would be a data stream of three-axis sensor data at a rate of 1 kHz.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 31 | 131

17 GPIO mapping of APP2.0 shuttle board pins
The APP2.0 shuttle board has total 28 pins, of which some have a predefined functionality and some can be used as
GPIO by the user.
The shuttle board connector details are given in the table below:

Pin number on shuttle board Name / function Pin number on shuttle board Name/function
1 VDD (3.3V) 28 SHTLE_COD #4
2 VDDIO (3.3V) 27 SHTLE_COD #3
3 GND 26 SHTLE_COD #2
4 SPI MISO 25 SHTLE_COD #1
5 SPI: MOSI / I∼2∼C: SDA 24 SHTLE_COD #0
6 SPI: SCK / I∼2∼C: SCL 23 SHTLE_COD_GND
7 SPI: CS 22 IO_4 (GPIO #4)
8 IO_5 (GPIO #5) 21 IO_7 (GPIO #7)
9 IO_0 (GPIO #0) 20 IO_6 (GPIO #6)
10 SHTLE_COD #5 19 IO_8 (GPIO #8)
11 SHTLE_COD #6 18 SCL (see note)
12 SHTLE_COD #7 17 SDA (see note)
13 SHTLE_COD #8 16 IO_3 (GPIO #3)
14 IO_1 (GPIO #1) 15 IO_2 (GPIO #2)

Table 1: Overview of shuttle board pins and their functions
Note:

· In coinesAPI the pins are addressed using the same numbers as on the shuttle board. For example, the GPIO #5
has the pin number 8.

· In some cases (depending on the sensor), the I∼2∼C lines are shuttle board pin 6 for the clock signal SCL and
shuttle board pin 5 for the data line SDA. In such cases pins 17 and 18 may not be connected. Please carefully read
the shuttle board documentation.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 32 | 131

18 GPIO mapping of APP3.0 shuttle board pins
The APP3.0 shuttle board has a total of 16 pins, 7 on the left and 9 on the right.(with shuttle board pins facing down-
wards).
Note:

· In coinesAPI the pins are addressed as on the APP3.0 shuttle board. For example, the GPIO #5 is addressed as
COINES_MINI_SHUTTLE_PIN_2_6.

· Supported VDD voltages on APP3.0 board are 0, 1.8V and 2.8V.
· Supported VDDIO voltage on APP3.0 board is 1.8V.

Pin number on shuttle board Name / function Pin number on shuttle board Name / function
1_1 VDD (1.8/2.8V) 2_1 SPI_CS
1_2 VDDIO (1.8) 2_2 SPI: SCK / I∼2∼C: SCL
1_3 GND 2_3 SPI: MISO / I∼2∼C: SDO
1_4 GPIO0 2_4 SPI: MOSI / I∼2∼C: SDA
1_5 GPIO1 2_5 GPIO4∗
1_6 GPIO2 2_6 GPIO5∗
1_7 GPIO3 2_7 IOXP_INT∗

2_8 PlugDet∗
2_9 EEPROM_RW

∗SPI pins for secondary interface - CS:GPIO4, SCK:GPIO5, MISO:IOXP_INT, MOSI:PlugDet
Table 2: Overview of APP3.0 shuttle board pins and their function

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 33 | 131

19 coines_open_comm_intf
Opens the communication interface. Currently only COINES_COMM_INTF_USB (USB Connection) interface is available.
COINES_COMM_INTF_BLE is available for MCU_APP30 target.
In case of MCU Target, API waits indefinitely for serial port or BLE connection (MCU_APP30 target only).
In order to use fprintf and fscanf with BLE, intf_type should be COINES_COMM_INTF_BLE

0

int16_t coines_open_comm_intf(enum coines_comm_intf intf_type,void *arg);

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 34 | 131

20 coines_close_comm_intf
Closes the communication interface.

0

int16_t coines_close_comm_intf(enum coines_comm_intf intf_type,void *arg);

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 35 | 131

21 coines_get_board_info
Gets the board information.

0

int16_t coines_get_board_info(struct coines_board_info *data);

The data structure contains the following items:

0

struct coines_board_info {

uint16_t hardware_id;

uint16_t software_id;

uint8_t board;

uint16_t shuttle_id;

};

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 36 | 131

22 coines_set_pin_config
Sets the pin direction and the state.

0

int16_t coines_set_pin_config(enum coines_multi_io_pin pin_number, enum coines_pin_direction direction, enum coines_pin_value pin_value);

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 37 | 131

23 coines_get_pin_config
Gets the pin configuration.

0

int16_t coines_get_pin_config(enum coines_multi_io_pin pin_number, enum coines_pin_direction *pin_direction, enum coines_pin_value *pin_value);

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 38 | 131

24 coines_set_shuttleboard_vdd_vddio_config
Configures the VDD and VDDIO of the sensor. For APP2.0, a voltage level of 0 or 3300 mV is supported. Any values
above 0 will default to 3300 mV.

0

int16_t coines_set_shuttleboard_vdd_vddio_config(uint16_t vdd_millivolt, uint16_t vddio_millivolt);

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 39 | 131

25 coines_config_i2c_bus
Configures the I∼2∼C bus.

0

int16_t coines_config_i2c_bus(enum coines_i2c_bus bus, enum coines_i2c_mode i2c_mode);

The first argument refers to the bus on the board. Currently, on APP2.0, there is only one bus available, so the argument
is always COINES_I2C_BUS_0.
The following I∼2∼C modes are available:

0

COINES_I2C_STANDARD_MODE

COINES_I2C_FAST_MODE

COINES_I2C_SPEED_3_4_MHZ

COINES_I2C_SPEED_1_7_MHZ

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 40 | 131

26 coines_config_spi_bus
Configures the SPI bus of the board. The argument coines_spi_bus refers to the bus on the board. On APP2.0, there
is only one bus available, so the user should only use COINES_SPI_BUS_0. The SPI speed can be chosen in various
discrete steps, as defined in enum coines_spi_speed in coines.h (For example, COINES_SPI_SPEED_2_MHZ sets the SPI
speed to 2 MHz).

0

int16_t coines_config_spi_bus(enum coines_spi_bus bus, uint32_t spi_speed, enum coines_spi_mode spi_mode);

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 41 | 131

27 coines_config_i2s_bus
This API is used to configure the I2S bus to match the TDM configuration

0

int16_t coines_config_i2s_bus(uint16_t data_words, coines_tdm_callback callback);

Arguments:

· data_words: number of words to use in the buffer. Max is set at COINES_TDM_BUFFER_SIZE_WORDS.
· callback: register a callback to be called to process and copy the data.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 42 | 131

28 coines_deconfig_spi_bus
This API is used to de-configure the SPI bus.

0

int16_t coines_deconfig_spi_bus(enum coines_spi_bus bus);

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 43 | 131

29 coines_deconfig_i2c_bus
This API is used to de-configure the I∼2∼C bus.

0

int16_t coines_deconfig_i2c_bus(enum coines_i2c_bus bus);

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 44 | 131

30 coines_deconfig_i2s_bus
This API is used to stop the I2S/TDM interface from reading data from the sensor.

0

void coines_deconfig_i2s_bus(void);

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 45 | 131

31 coines_write_i2c
Writes 8-bit register data to the I∼2∼C device at COINES_I2C_BUS_0.

0

int8_t coines_write_i2c(enum coines_i2c_bus bus,uint8_t dev_addr, uint8_t reg_addr, uint8_t *reg_data, uint16_t count);

Arguments:

· bus: I∼2∼C bus to be used.
· dev_addr: I∼2∼C device address.
· reg_addr: Starting address for writing the data.
· reg_data: Data to be written.
· count: Number of bytes to write.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 46 | 131

32 coines_read_i2c
Reads 8-bit register data from the I∼2∼C device at COINES_I2C_BUS_0.

0

int8_t coines_read_i2c(enum coines_i2c_bus bus,uint8_t dev_addr, uint8_t reg_addr, uint8_t *reg_data, uint16_t count);

Arguments:

· bus: I∼2∼C bus to be used.
· dev_addr: I∼2∼C device address.
· reg_addr: Starting address for reading the data.
· reg_data: Buffer to take up the read data.
· count: Number of bytes to read.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 47 | 131

33 coines_i2c_set
This API is used to write the data in I2C communication.

0

int8_t coines_i2c_set(enum coines_i2c_bus bus, uint8_t dev_addr, uint8_t *data, uint8_t count);

Arguments:

· bus: I2C bus to be used
· dev_addr: I2C device address.
· data: Data to be written.
· count: Number of bytes to write.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 48 | 131

34 coines_i2c_get
This API is used to read the data in I2C communication

0

int8_t coines_i2c_get(enum coines_i2c_bus bus, uint8_t dev_addr, uint8_t *data, uint8_t

count);

Arguments:

· bus: I2C bus to be used.
· dev_addr: I2C device address.
· data: Data read from the sensor.
· count: Number of bytes to read.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 49 | 131

35 coines_write_spi
Writes 8-bit register data to the SPI device at COINES_SPI_BUS_0.

0

int8_t coines_write_spi(enum coines_spi_bus bus,uint8_t dev_addr, uint8_t reg_addr, uint8_t *reg_data, uint16_t count);

Arguments:

· bus: SPI bus to be used.
· dev_addr: Chip select pin number.
· reg_addr: Starting address for writing the data.
· reg_data: Data to be written.
· count: Number of bytes to write.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 50 | 131

36 coines_read_spi
Reads 8-bit register data from the SPI device at COINES_SPI_BUS_0.

0

int8_t coines_read_spi(enum coines_spi_bus bus,uint8_t dev_addr, uint8_t reg_addr, uint8_t *reg_data, uint16_t count);

Arguments:

· bus: SPI bus to be used.
· dev_addr: Chip select pin number.
· reg_addr: Starting address for reading the data.
· reg_data: Buffer to take up the read data.
· count: Number of bytes to read.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 51 | 131

37 coines_config_word_spi_bus
Configures the SPI bus parameters speed, mode, 8-bit/16-bit transfer (COINES_SPI_TRANSFER_8BIT / COINES_SPI_TR←↩

ANSFER_16BIT).

0

int16_t coines_config_word_spi_bus(enum coines_spi_bus bus, enum coines_spi_speed spi_speed, enum coines_spi_mode spi_mode, enum coines_spi_transfer_bits spi_transfer_bits);

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 52 | 131

38 coines_write_16bit_spi
Writes 16-bit register data to the SPI device at COINES_SPI_BUS_0.

0

int8_t coines_write_16bit_spi(enum coines_spi_bus bus, uint8_t cs, uint16_t reg_addr, void *reg_data, uint16_t count);

Arguments:

· bus: SPI bus to be used.
· cs: Chip select pin number.
· reg_addr: Starting address for writing the data.
· reg_data: Data to be written.
· count: Number of bytes to write.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 53 | 131

39 coines_read_16bit_spi
Reads 16-bit register data from the SPI device at COINES_SPI_BUS_0.

0

int8_t coines_read_16bit_spi(enum coines_spi_bus bus, uint8_t cs, uint16_t reg_addr, void *reg_data, uint16_t count);

Arguments:

· bus: SPI bus to be used.
· cs: Chip select pin number.
· reg_addr: Starting address for reading the data.
· reg_data: Buffer to take up the read data.
· count: Number of bytes to read.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 54 | 131

40 coines_delay_msec
Introduces delay in millisecond.

0

void coines_delay_msec(uint32_t delay_ms);

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 55 | 131

41 coines_delay_usec
Introduces delay in microsecond.

0

void coines_delay_usec(uint32_t delay_us);

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 56 | 131

42 coinesAPI calls: Streaming feature
Note:

· The below APIs are supported only on PC Target.
· A simpler approach of using coines_attach_interrupt() API for is available for MCU.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 57 | 131

43 coines_config_streaming
Sets the configuration for streaming sensor data.

0

int16_t coines_config_streaming(uint8_t channel_id, struct coines_streaming_config *stream_config, struct coines_streaming_blocks *data_blocks);

Arguments:

· channel_id: An integer number that can be used as identifier/index to the sensor data that will be streamed for this
setting.

· stream_config: Contains information regarding interface settings and streaming configuration.
· coines_streaming_blocks: Contains information regarding numbers of register blocks, range and size of each

block.
Note:
The below parameters should always be set:

· data_block.no_of_blocks: number of blocks to stream (must at least be one).
· For each block b:

· data_block.reg_start_addr[b]: start address of the block in the register map.
· stream_block.no_of_data_bytes[b]: number of addresses to read, starting from the start address.

For reading data from I∼2∼C bus,then set the below parameters:

· stream_config.intf = COINES_SENSOR_INTF_I2C;

· stream_config.i2c_bus: I∼2∼C bus (in case of APP2.0, this is always COINES_I2C_BUS_0).
· stream_config.dev_addr: I∼2∼C address of the sensor.
For reading data from SPI bus, then set the below parameters:

· stream_config.intf = COINES_SENSOR_INTF_SPI;

· stream_config.spi_bus: SPI bus (in case of APP2.0, this is always COINES_SPI_BUS_0).
· stream_config.cs_pin: CS pin of the sensor, information can be obtained from the shuttle board documentation for

the sensor.
When polling mode is requested, set the below parameters:

· stream_config.sampling_units:
either in milliseconds (COINES_SAMPLING_TIME_IN_MILLI_SEC)
or in microseconds (COINES_SAMPLING_TIME_IN_MICRO_SEC)

· stream_config.sampling_time: sampling period is in the unit as defined in stream_config.sampling_units.
When interrupt mode is requested, set the below parameters:

· stream_config.int_pin: Pin of the interrupt which shall trigger the sensor read-out. If the interrupt output of the
sensor is used, the required information about the pin number can be obtained from the shuttle board documentation
for the sensor.

· stream_config.int_timestamp: It can be configured if the sensor data is tagged with a timestamp (COINES_TIME←↩

STAMP_ENABLE) or not (COINES_TIMESTAMP_DISABLE).

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 58 | 131

44 coines_start_stop_streaming
Starts or stops sensor data streaming.

0

int16_t coines_start_stop_streaming(enum coines_streaming_mode stream_mode, uint8_t start_stop);

Arguments:

· stream_mode: streaming mode (either COINES_STREAMING_MODE_POLLING or
COINES_STREAMING_MODE_INTERRUPT).

· start_stop: flag to either start (COINES_STREAMING_START) or stop (COINES_STREAMING_STOP) the streaming.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 59 | 131

45 coines_read_stream_sensor_data
Reads the data streamed from the sensor.

0

int16_t coines_read_stream_sensor_data(uint8_t sensor_id, uint32_t number_of_samples, uint8_t *data, uint32_t *valid_samples_count);

Arguments:

· sensor_id: id of the sensor.
· number_of_samples: number of samples the user wishes to read (not implemented).
· data: data buffer.

· Interrupt streaming - Packet counter + Register data + Timestamp
· Polling streaming - Register data.

· valid_samples_count: number of samples the user has actually received (may be less than number_of_samples).
Example of a packet:

Figure 12 Image: Format of streaming packages

{ width="700"} Fig. 13: Format of streaming packages
In the above figure, the following meaning apply to the mentioned abreviations:

· r∼p∼: Value at register address p.
· a: Size of register block–0.
· r∼p+a∼: Value at register address p.
Similarly is the case for r∼q∼, j and r∼q+j∼. See the coines_streaming_blocks structure for information regarding
register blocks.
The packet counter and the timestamp can be obtained as follows:

0

packet_counter = (byte3_c << 24) | (byte2_c << 16) | (byte1_c << 8) | (byte0_c);

timestamp = (byte5_t << 40) | (byte4_t << 32) | (byte3_t << 24) | (byte2_t << 16) | (byte1_t << 8) | (byte0_t);

The 48-bit timestamp is enabled by using coines_trigger_timer(COINES_TIMER_START, COINES_TIMESTAMP_ENABL←↩

E);

Timestamp in microseconds can be obtained using below formula:
$$ Timestamp\ (\mu s) = \frac{48bit_timestamp}{30}$$

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 60 | 131

46 coines_trigger_timer
Triggers the timer in firmware and also enables or disables the time stamp feature.

0

int16_t coines_trigger_timer(enum coines_timer_config tmr_cfg,enum coines_time_stamp_config ts_cfg);

Arguments:

· tmr_cfg: start, stop or reset the timer (COINES_TIMER_START, COINES_TIMER_STOP or COINES_TIMER_RESET).
· ts_cfg: Enables/disables microcontroller timestamp (COINES_TIMESTAMP_ENABLE or COINES_TIMESTAMP_DISABLE).

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 61 | 131

47 coines_get_millis
Returns the number of milliseconds passed since the program started.

0

uint32_t coines_get_millis();

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 62 | 131

48 coines_get_micro_sec
Returns the number of microseconds passed since the program started.

0

uint64_t coines_get_micro_sec();

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 63 | 131

49 coines_attach_interrupt
Attaches an interrupt to a Multi-IO pin. Works only on MCU.

0

void coines_attach_interrupt(enum coines_multi_io_pin pin_number,void (*callback)(uint32_t, uint32_t),enum coines_pin_interrupt_mode int_mode);

Arguments:

· pin_number: Multi-IO pin
· callback: Name of the function to be called on detection of interrupt
· int_mode: Trigger modes - change (COINES_PIN_INTERRUPT_CHANGE),

rising edge (COINES_PIN_INTERRUPT_RISING_EDGE),
falling edge (COINES_PIN_INTERRUPT_FALLING_EDGE)

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 64 | 131

50 coines_detach_interrupt
Detaches interrupt from a Multi-IO pin. Works only on MCU.

0

void coines_detach_interrupt(enum coines_multi_io_pin pin_number);

Arguments:

· pin_number : Multi-IO pin.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 65 | 131

51 coines_intf_available
Return the number of bytes available in the read buffer of the interface. Works only on APP3.0 MCU target.

0

uint16_t coines_intf_available(enum coines_comm_intf intf);

Arguments:

· intf: Type of interface (USB, COM, or BLE)

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 66 | 131

52 coines_intf_connected
Check if the interface is connected.Works only on APP3.0 MCU target.

0

bool coines_intf_connected(enum coines_comm_intf intf);

Arguments:

· intf: Type of interface (USB, COM, or BLE)

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 67 | 131

53 coines_flush_intf
Flush the write buffer.Works only on APP3.0 MCU target.

0

void coines_flush_intf(enum coines_comm_intf intf);

Arguments:

· intf: Type of interface (USB, COM, or BLE)

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 68 | 131

54 coines_read_intf
Read data over the specified interface.Works only on APP3.0 MCU target.

0

uint16_t coines_read_intf(enum coines_comm_intf intf, void *buffer, uint16_t len);

Arguments:

· intf: Type of interface (USB, COM, or BLE)
· buffer: Pointer to the buffer to store the data
· len: Length of the buffer

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 69 | 131

55 coines_write_intf
Write data over the specified interface.Works only on APP3.0 MCU target.

0

uint16_t coines_write_intf(enum coines_comm_intf intf, void *buffer, uint16_t len);

Arguments:

· intf: Type of interface (USB, COM, or BLE)
· buffer: Pointer to the buffer storing the data
· len: Length of the buffer

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 70 | 131

56 coines_get_version
Returns pointer to COINES version string

0

char* coines_get_version(void);

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 71 | 131

57 coines_soft_reset
Resets the device. After reset device jumps to the address specified in makefile(APP_START_ADDRESS).

0

void coines_soft_reset(void);

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 72 | 131

58 coines_read_temp_data
This API is used to read the temperature sensor data.

0

int16_t coines_read_temp_data(float *temp_data);

Arguments:

· temp_data: Buffer to retrieve the sensor data in degree Celsius.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 73 | 131

59 coines_read_bat_status
This API is used to read the battery status.

0

int16_t coines_read_bat_status(uint16_t *bat_status_mv, uint8_t *bat_status_percent);

Arguments:

· bat_status_mv: Buffer to retrieve the battery status in millivolt.
· bat_status_percent: Buffer to retrieve the battery status in percentage.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 74 | 131

60 coines_ble_config
This API is used to configure BLE name and power. It should be called before calling coines_open_comm_intf API.

0

int16_t coines_ble_config(struct coines_ble_config *ble_config);

Arguments:

· ble_config: structure holding ble name and power details.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 75 | 131

61 coines_set_led
This API is used to set led state(on or off).

0

int16_t coines_set_led(enum coines_led led,enum coines_led_state led_state);

Arguments:

· led: led whose state has to be set.
· led_state: state to be set to the given led.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 76 | 131

62 coines_timer_config
This API is used to configure the hardware timer.

0

int16_t coines_timer_config(enum coines_timer_instance instance, void* handler);

Arguments:

· instance: timer instance.
· handler: callback to be called when timer expires.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 77 | 131

63 coines_timer_deconfig
This API is used to de-configure the hardware timer.

0

int16_t coines_timer_deconfig(enum coines_timer_instance instance);

Arguments:

· instance: timer instance.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 78 | 131

64 coines_timer_start
This API is used to start the configured hardware timer.

0

int16_t coines_timer_start(enum coines_timer_instance instance, uint32_t timeout);

Arguments:

· instance: timer instance.
· timeout: timeout in microseconds.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 79 | 131

65 coines_timer_stop
This API is used to stop the hardware timer.

0

int16_t coines_timer_stop(enum coines_timer_instance instance);

Arguments:

· instance: timer instance.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 80 | 131

66 coines_get_realtime_usec
This API is used to get the current counter(RTC) reference time in usec.

0

uint32_t coines_get_realtime_usec(void);

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 81 | 131

67 coines_delay_realtime_usec
This API is used to introduce delay based on high precision RTC(LFCLK crystal) with the resolution of 30.517 usec.

0

void coines_delay_realtime_usec(uint32_t period);

Arguments:

· period: required delay in microseconds.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 82 | 131

68 coines_attach_timed_interrupt
Attaches a timed interrupt to a Multi-IO pin.

0

int16_t coines_attach_timed_interrupt(enum coines_multi_io_pin pin_number,

void (*timed_interrupt_cb)(uint64_t,uint32_t,uint32_t), enum coines_pin_interrupt_mode

int_mode);

Arguments:

· pin_number: Multi-IO pin.
· timed_interrupt_cb: Name of the function to be called on detection of interrupt.
· int_mode: Trigger modes - change, rising edge, falling edge.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 83 | 131

69 coines_detach_timed_interrupt
Detaches a timed interrupt from a Multi-IO pin.

0

int16_t coines_detach_timed_interrupt(enum coines_multi_io_pin pin_number);

Arguments:

· pin_number : Multi-IO pin.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 84 | 131

70 coines_echo_test
This API is used to test the communication.

0

int16_t coines_echo_test(uint8_t *data, uint16_t length);

Arguments:

· data : Data to be sent for testing.
· length : Length of the data.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 85 | 131

71 coines_shuttle_eeprom_write
This API is used to write the content into shuttle eeprom.

0

int16_t coines_shuttle_eeprom_write(uint16_t start_addr, uint8_t *buffer, uint16_t length);

Arguments:

· start_addr : EEPROM write address.
· buffer : Pointer to the buffer.
· length : Length of the buffer.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 86 | 131

72 coines_shuttle_eeprom_read
This API is used to read the content from shuttle eeprom.

0

int16_t coines_shuttle_eeprom_read(uint16_t start_addr, uint8_t *buffer,

uint16_t length);

Arguments:

· start_addr : EEPROM read address.
· buffer : Pointer to the buffer.
· length : Length of the buffer.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 87 | 131

73 coines_yield
This API can be defined to perform a task when yielded from an ongoing blocking call.

0

void coines_yield(void);

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 88 | 131

74 coines_execute_critical_region
This API is used to execute the function inside critical region.

0

void coines_execute_critical_region(coines_critical_callback callback);

Arguments:

· callback : function to execute.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 89 | 131

75 coines_scan_ble_devices
This API is used to connect to BLE Adapter and return list of BLE peripherals found during BLE scan.

0

int8_t coines_scan_ble_devices(struct ble_peripheral_info *ble_info, uint8_t

*peripheral_count, size_t scan_timeout_ms)

Arguments:

· ble_info : array of struct containing found BLE peripheral information.
· peripheral_count : number of BLE peripherals found.
· scan_timeout_ms : timeout for BLE scan.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 90 | 131

76 Simple data logging
The output data generated by the example files can easily be routed into log files for storing of the data. The following
code sniplet shows what the user would have to do in principle to generate a log file, stored in the current working
directory, on each example execution. The name of the log file is derived from the current time stamp at the time of
execution. The code sniplet is valid for examples compiled for PC side (TARGET=PC, see above). If the example is run
on the MCU, the data is provided via virtual COM port and the user can use any terminal program to access and store
the data.
Note that the code snippet does not contain any exception handling, such as checking file overwrite or if fopen returns
without error.

0

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

FILE *log_fd;

char *logfile = malloc(28);

time_t now;

struct tm *tm;

now = time(0);

tm = localtime(&now);

sprintf(logfile, "logfile_%04d%02d%02d_%02d%02d%02d.log",

tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec);

log_fd = fopen(logfile, "w");

...

while(CONDITION)

{

...

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 91 | 131

bmaXYZ_get_data(&data);

fprintf(log_fd, "%d, %d, %d", data.x, data.y, data.z);

}

fclose(log_fd);

return 0;

}

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 92 | 131

77 Data plotting and visualization
When compiling an example to run on MCU (for example TARGET=MCU_APP20, see above), the obtained sensor data
can easily be plotted in the serial plotter of the Arduino IDE.
The example application must print the sensor data to be plotted in a text string, with a terminating new line character.
Multiple sensor values per axis are possible. The printf command will stream the sensor data in an ASCII string via
(virtual) COM port. Once the user connects to the COM port and opens the Arduino serial plotter, the data will be
displayed in a graphical way.
Notes and hints:

· If the user wants to use an other plotting software, he must consider that the DTR signal line must be set, otherwise
the flashed application on the application board will not start running. The serial plotter and serial monitor of Arduino
IDE set this signal automatically, other software (like HTerm) have the option to do this manually.

· The plotting window offers automatic re-sizing. If the user does not want this and needs fixed limits, he could plot
the limits as additional lines.
Example: printf("\%d \%d \%d\textbackslash n", lower_limit, sensor_data, upper_limit);

· In case of sensor data with a high offset, such as the output of a barometric pressure sensor, which is usually around
100000 Pa, the user may want to substract a certain offset, so see details of the signal.
Example: printf("\%d\textbackslash n", (pressure - 99000));

Figure 13 Image: Accelerometer sensor data on Arduino Serial Plotter

{ width="700"} Fig. 14: Accelerometer sensor data on Arduino Serial Plotter

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 93 | 131

78 Media Transfer Protocol (MTP) firmware for Application Board 3.0
The external memory chip W25M02/W25N02 on APP3.0 is based on NAND flash.
FAT filesystem on NAND flash memory results in a complicated solution which uses of lot of RAM. Moreover use of
FAT without Flash Translation Layer (to save RAM) wears out NAND flash with frequent usage. Hence the choice of
FlogFS, a filesystem optimized for use with NAND flash.
But the use of FlogFS, presents a new problem 'Filesystem access from PC via USB'. Use of FlogFS with USB Mass
Storage protocol is not possible because operating system can't recognize FlogFS as a valid filesystem.
Use of custom protocol to do filesystem operations would mean re-inventing the wheel and a lot of effort. User also
would not have the same experience as with USB Mass Storage.
Solution was to go with the "Media Transfer Protocol" developed initially by Microsoft for Portable Devices like MP3
players. Starting from Android Kitkat (v4.4), MTP is the only way to access files on an Android device since the whole
flash memory (included user storage space) uses filesystems like ext4, YAFFS, F2FS, etc.
Files in APP3.0 board's NAND flash memory can be viewed using the USB MTP firmware.
Supported on Windows, Linux, Android (via USB OTG) and macOS.

Figure 14 Image: MTP Windows

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

https://github.com/conservify/FLogFS
https://github.com/conservify/FLogFS

Bosch Sensortec | COINES SDK - CONFIDENTIAL 94 | 131

Figure 15 Image: MTP Ubuntu Nautilus

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 95 | 131

Figure 16 Image: MTP Android 2

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 96 | 131

Figure 17 Image: MTP Android 3

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 97 | 131

79 Switching to MTP mode
· Connect the Application Board 3.0 using USB cable to PC.
· Application Board 3.0 comes with the preloaded MTP firmware update package.
· Turn OFF and turn ON the board with T1 pressed. Green LED glows on the board indicating that board switched to

MTP mode.
For reference find the examples in following path COINES\v2.6.0\examples\c\file_handling and run using below
command

· mingw32-make TARGET=MCU_APP30 download

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 98 | 131

80 Copying the files using MTP
· Connect the Application Board 3.0 using USB cable to PC.
· Turn OFF and turn ON the board with T1 pressed.
· The device will enumerate as an MTP device with name "Application Board 3.0". Click on it and select the "W25M02

External Memory".
· The device will list all the available files and all required files can be copied.

Figure 18 Image: Copy data log files to the PC over USB MTP

Fig. 15: Copy data log files to the PC over USB MTP

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 99 | 131

81 USB/BLE DFU bootloader
A USB/BLE Bootloader for APP3.0 Board/nRF52840 and Nicla Sense ME/nRF52832 chip complying with :

· https://www.usb.org/sites/default/files/DFU_1.1.pdf

· https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v17.1.0%2Fble_sdk_app_dfu_bootloader.←↩

html&cp=9_1_4_2_3

APP3.0 Board bootloader can be found in the following path COINES\v2.6.0\firmware\app3.0\bootloader_update
and Nicla Sense ME Board bootloader can be found in the following path COINES\v2.8.8\firmware\nicla\bootloader←↩

_update

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

https://www.usb.org/sites/default/files/DFU_1.1.pdf
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v17.1.0%2Fble_sdk_app_dfu_bootloader.html&cp=9_1_4_2_3
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v17.1.0%2Fble_sdk_app_dfu_bootloader.html&cp=9_1_4_2_3

Bosch Sensortec | COINES SDK - CONFIDENTIAL 100 | 131

82 USB DFU
· Code download to RAM or FLASH.
· Code read back (upload) from RAM or FLASH (Useful for taking firmware backups).
· Works with Windows, Linux, macOS and Android.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 101 | 131

83 BLE DFU
· Code download to FLASH.
· Works with PC and mobile devices with iOS/Android.
Bootloader was written taking into account the following aspects :

· Usability
1. No special driver installation or admin rights should be required.
2. The update process should be straight forward.

· Maintainability
1. Open source community takes care of PC side tools. For eg: dfu-util is a cross platform tool.
2. Use Google Chrome's WebUSB to update firmware. https://devanlai.github.io/webdfu/dfu-util/

· Size
· COINES on MCU.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

https://devanlai.github.io/webdfu/dfu-util/

Bosch Sensortec | COINES SDK - CONFIDENTIAL 102 | 131

84 Invoking the Bootloader

84.1APP3.0 Board

· Hardware
· Turn OFF and ON the board with T2 pressed, blue LED glows indicating that the board switched to bootloader

mode.
· Software

· Write 0x4E494F43 ('N','I','O','C') to MAGIC_LOCATION (0x2003FFF4)
· Write 0x0 or 0xF0000 to APP_START_ADDR (0x2003FFF8)
· Call NVIC_SystemReset()
· Invoke Bootloader from Software

```C #define MAGIC_LOCATION (0x2003FFF4) #define APP_START_ADDR (∗(uint32_t ∗)(MAGIC_LOCATION+4)
∗((uint32_t ∗)MAGIC_LOCATION) == 0x4E494F43; APP_START_ADDR = 0xF0000; //APP_START_ADDR = 0x0;
NVIC_SystemReset(); ```
· The same feature can also be used to perform application switch ( 2 or more applications can reside in the same

flash memory at different address locations ). Just write the application start address to APP_START_ADDR
instead of bootloader address.

84.2Nicla Sense ME Board

· Hardware
· Press three times reset button, blue LED glows indicating that the board switched to bootloader mode.

· Software
· Write 0x4E494F43 (’N’,’I’,’O’,’C’) to MAGIC_LOCATION (0x2000F804)
· Call NVIC_SystemReset()
· Invoke Bootloader from Software

```C #define MAGIC_LOCATION (0x2000F804) #define APP_START_ADDR (∗(uint32_t ∗)(MAGIC_LOCATION+4)
∗((uint32_t ∗)MAGIC_LOCATION) == 0x544F4F42; NVIC_SystemReset(); ```
· The same feature can also be used to perform application switch (2 or more applications can reside in the same

flash memory at different address locations).Just write the application start address to APP_START_ADDR
instead of bootloader address.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 103 | 131

85 Using the Bootloader via USB
Write firmware to Flash memory using following command

· dfu-util -a FLASH -D fw.bin -R
Write firmware to RAM memory using following command

· dfu-util -a RAM -D fw.bin -R
Read firmware from Flash memory using following command

· dfu-util -a FLASH -U fw_bkup.bin
Read firmware from RAM memory using following command

· dfu-util -a RAM -U fw_bkup.bin
Read device serial number/ BLE MAC address

· dfu-util -l
Note : Not applicable for Nicla Sense ME board

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 104 | 131

86 Using the Bootloader via BLE
· PC (Windows/Linux and macOS)

Python script present in following path COINES\v2.6.0\tools\app30-ble-dfu can use the binary file directly.
1. Scan for devices to find BLE MAC address using below command.

· python app30-ble-dfu.py -l
2. Update firmware by using MAC address obtained in the previous step and firmware BIN file.

· python app30-ble-dfu.py -d D7:A3:CE:8E:36:14 -f firmware.bin
· Android devices

1. Generate ZIP package using https://pypi.org/project/adafruit-nrfutil/ before using nRF ToolBox for
BLE or nRF connect for mobile.
· adafruit-nrfutil dfu genpkg –dev-type 0x0052 –application firmware.bin dfu-package.zip

Note : Not applicable for Nicla Sense ME board

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

https://pypi.org/project/adafruit-nrfutil/

Bosch Sensortec | COINES SDK - CONFIDENTIAL 105 | 131

87 Updating bootloader

87.1App3.0 Board

· Connect the Application Board 3.0 using USB cable to PC.
· Application Board 3.0 comes preloaded bootloader update package.
· To update the bootloader run "update_bootloader.bat" file present in the following path :

· COINES\v2.6.0\firmware\app3.0\bootloader_update

· To go to bootloader mode turn OFF and ON the board with T2 pressed, blue LED glows indicating that the board
switched to bootloader mode.

87.2Nicla Sense ME Board

· Connect the Nicla Sense ME board using USB cable to PC.
· To prepare the board run "prepare_nicla.bat" file present in the following path :

· COINES\v2.8.8\firmware\nicla

· To update the bootloader run "update_bootloader.bat" file present in the following path :
· COINES\v2.8.8\firmware\nicla\bootloader_update

· To go to bootloader mode press three times reset button, blue LED glows indicating that the board switched to
bootloader mode.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 106 | 131

88 Updating DD firmware
· Connect the Application Board 3.0 using USB cable to PC.
· Make sure bootloader is flashed into Application board 3.0
· To update the DD firmware run "update_dd_fw.bat" file present in the following path COINES\v2.6.0\firmware\app3.←↩

0

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 107 | 131

89 Updating MTP firmware
· Connect the Application Board 3.0 using USB cable to PC.
· Make sure bootloader is flashed into Application board 3.0
· To update the MTP firmware run "update_mtp_fw.bat" file present in the following path C:\COINES\v2.6.0\firmware\app3.←↩

0\mtp_fw_update

· To switch to the MTP mode, turn OFF and ON the board with T1 pressed, green LED glows indicating that the board
switched to MTP mode.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 108 | 131

90 Updating Coines Bridge firmware on Nicla Sense ME Board
· Connect the Nicla Sense ME board using USB cable to PC.
· Make sure"prepare_nicla.bat" file is executed to flash softdevice and bootloader into Nicla Sense ME board.
· To update the Coines Bridge firmware run "update_coines_bridge_flash_fw.bat" file present in the following path
C:\COINES\v2.8.8\firmware\nicla\coines_bridge

· To switch to the App mode from bootloader mode, press three times reset button.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 109 | 131

91 Introduction to <tt>coinespy</tt> library
The coinespy library allows users to access the Bosch Sensortec Application Board using Python.

· Control VDD and VDDIO of sensor.
· Configure SPI and I∼2∼C bus parameters.
· Read and write into registers of sensors from Bosch Sensortec via SPI and I∼2∼C.
· Read and write digital pins of the Application Board.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 110 | 131

92 Installation
The coinespy module can be installed using pip:

0

pip install coinespy

Linux users may have to use the below commands due to co-existence of Python 2.7 and Python 3.x

0

pip3 install coinespy

python3 -m pip install coinespy

The module can be found on https://pypi.org/project/coinespy/ and also in the COINES installation folder, pre-
cisely in the subfolder coines-api\pc\python, in which a python wheel package is placed.
It is highly recommended that the user is testing the following script (can be found as examples\python\coinespy_←↩

test.py in the COINES installation) to check if the installation was successful:

0

import coinespy as cpy

from coinespy import ErrorCodes

COM_INTF = cpy.CommInterface.USB

if __name__ == "__main__":

board = cpy.CoinesBoard()

print(’coinespy version - %s’ % cpy.__version__)

board.open_comm_interface(COM_INTF)

if board.error_code != ErrorCodes.COINES_SUCCESS:

print(f’Could not connect to board: {board.error_code}’)

else:

b_info = board.get_board_info()

print(f"coines lib version: {board.lib_version}")

print(f’BoardInfo: HW/SW ID: {hex(b_info.HardwareId)}/{hex(b_info.SoftwareId)}’)

board.close_comm_interface()

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

https://pypi.org/project/coinespy/

Bosch Sensortec | COINES SDK - CONFIDENTIAL 111 | 131

93 coinespy API description
As coinespy is only a wrapper on top of coinesAPI, the following API documentation is limited to the wrapper only. Details
about meaning of variables and functionality can be found in the corresponding coinesAPI documentation in the chapter
above. The following function calls are defined within the class coinesBoard. Thus in order to access the functions, the
user has to create an object of that class first.

0

import coinespy as cpy

coinesboard = cpy.CoinesBoard()

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 112 | 131

94 coinespy API calls: Interface and board information

94.1open_comm_interface

Sets the communication interface between board and PC to USB or Serial.

0

coinesboard.open_comm_interface(interface=CommInterface.USB, arg=None) -> ErrorCodes

For the definition of CommInterface, refer to 11.3.6.3.

94.2close_comm_interface

Disposes the resources used by the USB/serial/BLE communication.

0

coinesboard.close_comm_interface(arg=None) -> ErrorCodes

94.3get_board_info

Obtains board specific information.

0

BoardInfo = coinesboard.get_board_info()

Return:

BoardInfo.HardwareId # Hardware ID

BoardInfo.SoftwareId # Firmware version information

BoardInfo.Board # Board type

BoardInfo.ShuttleID # ID of shuttle, in case a shuttle is detected

94.4scan_ble_devices

This API is used to connect to BLE Adapter and return list of BLE peripherals found during BLE scan.

0

ble_info, peripheral_count = coinesboard.scan_ble_devices(scan_timeout_ms=0) -> Tuple[list, int]

For the definition of parameters, refer to ../../../coines_api/api_calls/other_api/coines_scan_ble_devices.md "6.8.29".

94.5echo_test

This API is used to test the communication.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 113 | 131

0

coinesboard.echo_test(data: List[int]) -> ErrorCodes

Arguments:

· data: Data to be sent for testing.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 114 | 131

95 coinespy API calls: GPIO oriented calls

95.1set_pin_config

Configures the state, level and direction of a GPIO pin

0

coinesboard.set_pin_config(pin_number: MultiIOPin,direction: PinDirection,output_state: PinValue) -> ErrorCodes

For the definition of MultiIOPin, refer to 11.3.6.8. For the definition of PinDirection, refer to 11.3.6.1. For PinValue,
refer to 11.3.6.2.

95.2get_pin_config

Obtains information regarding the Pin’s state, level and direction.

0

PinConfigInfo = coinesboard.get_pin_config(pin_number: MultiIOPin)

Return:

PinConfigInfo.direction # 0: INPUT, 1: OUTPUT

PinConfigInfo.switch_state # 0: OFF, 1: ON

PinConfigInfo.level # 1: HIGH, 0: LOW

95.3set_shuttleboard_vdd_vddio_config

Set the VDD and VDDIO voltage level.

0

coinesboard.set_shuttleboard_vdd_vddio_config(vdd_val: float = None, vddio_val: float =

None) -> ErrorCodes

Example: coinesboard.set_shuttleboard_vdd_vddio_config(3.3, 3.3)

95.4set_vdd

Set the VDD voltage level.

0

coinesboard.set_vdd(vdd_val: float = None) -> ErrorCodes

Example: coinesboard.set_vdd(3.3)

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 115 | 131

95.5set_vddio

Set the VDDIO voltage level.

0

coinesboard.set_vddio(vdd_val: float = None) -> ErrorCodes

Example: coinesboard.set_vddio(3.3)

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 116 | 131

96 coinespy API calls: Sensor communication
For the definition of SPIBus, refer to 11.3.6.11. For the definition of I2CBus, refer to 11.3.6.10.

96.1config_i2c_bus

Configures the I∼2∼C bus

0

coinesboard.config_i2c_bus(bus: I2CBus, i2c_address: int, i2c_mode: I2CMode) -> ErrorCodes

For the definition of I2CMode, refer to 11.3.6.4.

96.2config_spi_bus

Configures the SPI bus of the board.

0

coinesboard.config_spi_bus(bus: SPIBus, cs_pin: MultiIOPin, spi_speed=SPISpeed,

spi_mode=SPIMode) -> ErrorCodes

For the definition of MultiIOPin, refer to 11.3.6.8. For the definition of SPISpeed, refer to 11.3.6.5. For the definition
of SPIMode, refer to 11.3.6.7.

96.3deconfig_i2c_bus

This API is used to de-configure the I∼2∼C bus

0

coinesboard.deconfig_i2c_bus(bus: I2CBus) -> ErrorCodes

96.4deconfig_spi_bus

This API is used to de-configure the SPI bus

0

coinesboard.deconfig_spi_bus(bus: SPIBus) -> ErrorCodes

96.5write_i2c

Writes 8-bit register data to the I∼2∼C

0

coinesboard.write_i2c(bus: I2CBus, register_address: int, register_value: int,

sensor_interface_detail: int = None) -> ErrorCodes

For the definition of parameters, refer to ../../../coines_api/api_calls/sensor_communication/coines_write_i2c.md "6.6.7".

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 117 | 131

96.6read_i2c

Reads 8-bit register data from the I∼2∼C

0

register_data = coinesboard.read_i2c(bus: I2CBus, register_address: int, number_of_reads=1, sensor_interface_detail: int = None)

For the definition of parameters, refer to ../../../coines_api/api_calls/sensor_communication/coines_read_i2c.md "6.6.8".

96.7write_spi

Writes 8-bit register data to the SPI device.

0

coinesboard.write_spi(bus: SPIBus, register_address: int, register_value: int,

sensor_interface_detail: int = None) -> ErrorCodes

For the definition of parameters, refer to ../../../coines_api/api_calls/sensor_communication/coines_write_spi.md "6.6.←↩

11".

96.8read_spi

Reads 8-bit register data from the SPI device.

0

register_data = coinesboard.read_spi(bus: SPIBus, register_address: int,

number_of_reads=1, sensor_interface_detail: int = None)

For the definition of parameters, refer to ../../../coines_api/api_calls/sensor_communication/coines_read_spi.md "6.6.←↩

12".

96.9config_word_spi_bus

Configures the SPI bus parameters.

0

coinesboard.config_word_spi_bus(bus: SPIBus, cs_pin: MultiIOPin,

spi_speed=SPISpeed.SPI_1_MHZ, spi_mode=SPIMode.MODE0,

spi_bits=SPITransferBits.SPI16BIT) -> ErrorCodes

For the definition of MultiIOPin, refer to 11.3.6.8. For the definition of SPISpeed, refer to 11.3.6.5. For the definition
of SPITransferBits, refer to 11.3.6.6.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 118 | 131

96.10write_16bit_spi

Writes 16-bit register data to the SPI device.

0

coinesboard.write_16bit_spi(bus: SPIBus, register_address: int, register_value:

List[int], sensor_interface_detail: int = None) -> ErrorCodes

For the definition of parameters, refer to ../../../coines_api/api_calls/sensor_communication/coines_write_16bit_spi.md
"6.6.14".

96.11read_16bit_spi

Reads 16-bit register data from the SPI device.

0

register_data = coinesboard.read_16bit_spi(bus: SPIBus, register_address: int,

number_of_reads=2, sensor_interface_detail: int = None)

For the definition of parameters, refer to ../../../coines_api/api_calls/sensor_communication/coines_read_16bit_spi.md
"6.6.15".

96.12delay_milli_sec

Introduces delay in millisecond.

0

coinesboard.delay_milli_sec(time_in_milli_sec=100)

96.13delay_micro_sec

Introduces delay in microsecond.

0

coinesboard.delay_micro_sec(time_in_micro_sec=1)

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 119 | 131

97 coinespy API calls: Streaming feature

97.1config_streaming

Sets the configuration for streaming sensor data.

0

coinesboard.config_streaming(sensor_id: int,

stream_config: StreamingConfig, data_blocks: StreamingBlocks) -> ErrorCodes

Arguments:

· sensor_id : An integer number that can be used as identifier/index to the sensor data that will be streamed for this
setting.

· stream_config : Contains information regarding interface settings and streaming configuration.
· data_blocks : Contains information regarding numbers of blocks to read, register address and size for each block.
Note:
The below parameters should always be set:

· data_blocks.NoOfBlocks : number of blocks to stream (must at least be one).
· For each block b:

· data_blocks.RegStartAddr[b] : start address of the block in the register map
· data_blocks.NoOfDataBytes[b] : number of bytes to read, starting from the start address

For reading data from I∼2∼C bus,then set the below parameters:

· stream_config.Intf = cpy.SensorInterface.I2C.value
· stream_config.I2CBus : I2C bus (in case of APP2.0 and APP3.0, this is always cpy.I2CBus.BUS_I2C_0.value)
· stream_config.DevAddr : I2C address of the sensor
For reading data from SPI bus, then set the below parameters:

· stream_config.Intf = cpy.SensorInterface.SPI.value;
· stream_config.SPIBus : SPI bus (in case of APP2.0 and APP3.0, this is always cpy.SPIBus.BUS_SPI_0.value)
· stream_config.CSPin : CS pin of the sensor, information can be obtained from the shuttle board documentation for

the sensor.
· stream_config.SPIType: 0 : 8-bit SPI; 1 : 16-bit SPI
When polling mode is requested, set the below parameters:

· stream_config.SamplingUnits : either milliseconds or microseconds. Refer to 11.3.6.15.
· stream_config.SamplingTime : Sampling period in the unit as defined in stream_config.SamplingUnits.
When interrupt mode is requested, set the below parameters:

· stream_config.IntPin : pin of the interrupt which shall trigger the sensor read-out. If the interrupt output of the
sensor is used, the required information about the pin number can be obtained from the shuttle board documentation
for the sensor.

· stream_config.IntTimeStamp: it can be configured if the sensor data is tagged with a timestamp - 1 or not - 0.
· stream_config.HwPinState: State of the hardware pin connected to the interrupt line - 0/1 : Low/high
Below parameters are common for both streaming types:

· stream_config.IntlineCount : Number of interrupt lines to be used for monitoring interrupts.
· stream_config.IntlineInfo : List of pin numbers that correspond to interrupt lines being used for interrupt moni-

toring.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 120 | 131

· stream_config.ClearOnWrite : 0/1 : Disable/enable "clear on write" feature.
The below parameters should be set only when stream_config.ClearOnWrite = 1:
· stream_config.ClearOnWriteConfig.StartAddress: Address of the sensor register at which the process of clear←↩

OnWrite should initiate.
· stream_config.ClearOnWriteConfig.DummyByte: Number of padding bytes that must be added before clearing the

bytes starting from the designated address.
· stream_config.ClearOnWriteConfig.NumBytesToClear: Number of bytes that need to be cleared.
Below is the Python code snippet for interrupt streaming

0

Store streaming settings in local variables

accel_stream_settings = dict(

I2C_ADDR_PRIMARY=0x18,

NO_OF_BLOCKS = 2,

REG_X_LSB= [0x12, 0x00],

NO_OF_DATA_BYTES= [6, 1],

CHANNEL_ID=1,

CS_PIN=cpy.MultiIOPin.SHUTTLE_PIN_8.value,

INT_PIN=cpy.MultiIOPin.SHUTTLE_PIN_21.value,

INT_TIME_STAMP=1,

)

gyro_stream_settings = dict(

I2C_ADDR_PRIMARY=0x68,

NO_OF_BLOCKS = 2,

REG_X_LSB= [0x02,0x00],

NO_OF_DATA_BYTES = [6, 1],

CHANNEL_ID=2,

CS_PIN=cpy.MultiIOPin.SHUTTLE_PIN_14.value,

INT_PIN=cpy.MultiIOPin.SHUTTLE_PIN_22.value,

INT_TIME_STAMP=1,

)

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 121 | 131

set the config_streaming parameters

stream_config = cpy.StreamingConfig()

data_blocks = cpy.StreamingBlocks()

if self.interface == cpy.SensorInterface.I2C:

stream_config.Intf = cpy.SensorInterface.I2C.value

stream_config.I2CBus = cpy.I2CBus.BUS_I2C_0.value

stream_config.DevAddr = sensor["I2C_ADDR_PRIMARY"]

elif self.interface == cpy.SensorInterface.SPI:

stream_config.Intf = cpy.SensorInterface.SPI.value

stream_config.SPIBus = cpy.SPIBus.BUS_SPI_0.value

stream_config.CSPin = sensor["CS_PIN"]

if sensor_type == bmi08x.SensorType.ACCEL and self.interface == cpy.SensorInterface.SPI:

extra dummy byte for SPI

dummy_byte_offset = 1

else:

dummy_byte_offset = 0

data_blocks.NoOfBlocks = sensor["NO_OF_BLOCKS"]

for i in range(0, data_blocks.NoOfBlocks):

data_blocks.RegStartAddr[i] = sensor["REG_X_LSB"][i]

data_blocks.NoOfDataBytes[i] = sensor["NO_OF_DATA_BYTES"][i] + dummy_byte_offset

stream_config.IntTimeStamp = sensor["INT_TIME_STAMP"]

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 122 | 131

stream_config.IntPin = sensor["INT_PIN"]

call config_streaming API for each sensor to configure the streaming settings

ret = coinesboard.config_streaming(

accel_sensor_id, self.accel_stream_config, self.accel_data_blocks)

ret = coinesboard.config_streaming(

gyro_sensor_id, self.accel_stream_config, self.accel_data_blocks)

97.2start_stop_streaming

Starts or stops sensor data streaming.

0

coinesboard.start_stop_streaming(stream_mode: StreamingMode, start_stop:

StreamingState) -> ErrorCodes

For the definition of StreamingMode, refer to 11.3.6.13. For the definition of StreamingState, refer to 11.3.6.14.

97.3read_stream_sensor_data

Reads the data streamed from the sensor.

0

coinesboard.read_stream_sensor_data(sensor_id: int, number_of_samples: int, buffer_size=STREAM_RSP_BUF_SIZE) -> Tuple[ErrorCodes, list, int]

Return:
Tuple of ErrorCodes, data and valid_samples_count For the detailed definition of parameters, refer to ../../../coines_←↩

api/api_calls/streaming_feature/coines_read_stream_sensor_data.md "6.7.3".

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 123 | 131

98 coinespy API calls: Other useful APIs
flush_interface

Flush the write buffer

0

coinesboard.flush_interface()

soft_reset

Resets the device.

0

coinesboard.soft_reset()

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 124 | 131

99 Definiton of constants

99.1PinDirection

Pin mode definitions.

0

class PinDirection:

INPUT = 0 # COINES_PIN_DIRECTION_IN = 0

OUTPUT = 1

99.2PinValue

Pin level definitions.

0

class PinValue:

LOW = 0 # COINES_PIN_VALUE_LOW = 0

HIGH = 1

99.3CommInterface

Definition of Communication interface.

0

class CommInterface:

USB = 0

SERIAL = 1

BLE = 2

99.4I2CMode

Definition of the speed of I2C bus.

0

class I2CMode:

STANDARD_MODE = 0 # Standard mode - 100kHz

FAST_MODE = 1 # Fast mode - 400kHz

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 125 | 131

SPEED_3_4_MHZ = 2 # High Speed mode - 3.4 MHz

SPEED_1_7_MHZ = 3 # High Speed mode 2 - 1.7 MHz

99.5SPISpeed

Definition of the speed of SPI bus.

0

class SPISpeed:

SPI_10_MHZ = 6

SPI_7_5_MHZ = 8

SPI_6_MHZ = 10

SPI_5_MHZ = 12

SPI_3_75_MHZ = 16

SPI_3_MHZ = 20

SPI_2_5_MHZ = 24

SPI_2_MHZ = 30

SPI_1_5_MHZ = 40

SPI_1_25_MHZ = 48

SPI_1_2_MHZ = 50

SPI_1_MHZ = 60

SPI_750_KHZ = 80

SPI_600_KHZ = 100

SPI_500_KHZ = 120

SPI_400_KHZ = 150

SPI_300_KHZ = 200

SPI_250_KHZ = 240

99.6SPITransferBits

Definition of the SPI bits.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 126 | 131

0

class SPITransferBits:

SPI8BIT = 8 # 8 bit register read/write

SPI16BIT = 16 # 16 bit register read/write

99.7SPIMode

Definition of the SPI mode.

0

class SPIMode:

MODE0 = 0x00 # SPI Mode 0: CPOL=0; CPHA=0

MODE1 = 0x01 # SPI Mode 1: CPOL=0; CPHA=1

MODE2 = 0x02 # SPI Mode 2: CPOL=1; CPHA=0

MODE3 = 0x03 # SPI Mode 3: CPOL=1; CPHA=1

99.8MultiIOPin

Definition of the shuttle board pin(s)

0

class MultiIOPin(Enum):

SHUTTLE_PIN_7 = 0x09 # CS pin

SHUTTLE_PIN_8 = 0x05 # Multi-IO 5

SHUTTLE_PIN_9 = 0x00 # Multi-IO 0

SHUTTLE_PIN_14 = 0x01 # Multi-IO 1

SHUTTLE_PIN_15 = 0x02 # Multi-IO 2

SHUTTLE_PIN_16 = 0x03 # Multi-IO 3

SHUTTLE_PIN_19 = 0x08 # Multi-IO 8

SHUTTLE_PIN_20 = 0x06 # Multi-IO 6

SHUTTLE_PIN_21 = 0x07 # Multi-IO 7

SHUTTLE_PIN_22 = 0x04 # Multi-IO 4

SHUTTLE_PIN_SDO = 0x1F

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 127 | 131

APP3.0 pins

MINI_SHUTTLE_PIN_1_4 = 0x10 # GPIO0

MINI_SHUTTLE_PIN_1_5 = 0x11 # GPIO1

MINI_SHUTTLE_PIN_1_6 = 0x12 # GPIO2/INT1

MINI_SHUTTLE_PIN_1_7 = 0x13 # GPIO3/INT2

MINI_SHUTTLE_PIN_2_5 = 0x14 # GPIO4

MINI_SHUTTLE_PIN_2_6 = 0x15 # GPIO5

MINI_SHUTTLE_PIN_2_1 = 0x16 # CS

MINI_SHUTTLE_PIN_2_3 = 0x17 # SDO

MINI_SHUTTLE_PIN_2_7 = 0x1D # GPIO6

MINI_SHUTTLE_PIN_2_8 = 0x1E # GPIO7

99.9SensorInterface

To define Sensor interface.

0

class SensorInterface(Enum):

SPI = 0

I2C = 1

99.10I2CBus

Used to define the I2C type.

0

class I2CBus(Enum):

BUS_I2C_0 = 0

BUS_I2C_1 = 1

BUS_I2C_MAX = 2

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 128 | 131

99.11SPIBus

Used to define the SPI type.

0

class SPIBus(Enum):

BUS_SPI_0 = 0

BUS_SPI_1 = 1

BUS_SPI_MAX = 2

99.12PinInterruptMode

Defines Pin interrupt modes.

0

class PinInterruptMode(Enum):

Trigger interrupt on pin state change

PIN_INTERRUPT_CHANGE = 0

Trigger interrupt when pin changes from low to high

PIN_INTERRUPT_RISING_EDGE = 1

Trigger interrupt when pin changes from high to low

PIN_INTERRUPT_FALLING_EDGE = 2

PIN_INTERRUPT_MODE_MAXIMUM = 4

99.13StreamingMode

Streaming mode definitions.

0

class StreamingMode:

STREAMING_MODE_POLLING = 0 # Polling mode streaming

STREAMING_MODE_INTERRUPT = 1 # Interrupt mode streaming

99.14StreamingState

Streaming state definitions.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 129 | 131

0

class StreamingState:

STREAMING_START = 1

STREAMING_STOP = 0

99.15SamplingUnits

Sampling Unit definitions.

0

class SamplingUnits:

SAMPLING_TIME_IN_MICRO_SEC = 0x01 # sampling unit in micro second

SAMPLING_TIME_IN_MILLI_SEC = 0x02 # sampling unit in milli second

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 130 | 131

100Error Codes
Error codes are not (always) returned by the different function calls. Internally, an error_code variable is maintained
which is updated after the function call. It can be read out and checked by the user afterwards.
Example:

0

import coinespy as cpy

board = cpy.CoinesBoard()

try:

board.open_comm_interface(cpy.CommInterface.USB)

board.close_comm_interface()

except:

print(f’Could not connect to board: {board.error_code}’)

exit(board.error_code)

100.1General Error Codes

Error code definitions

0

class ErrorCodes(Enum):

COINES_SUCCESS = 0

COINES_E_FAILURE = -1

COINES_E_COMM_IO_ERROR = -2

COINES_E_COMM_INIT_FAILED = -3

COINES_E_UNABLE_OPEN_DEVICE = -4

COINES_E_DEVICE_NOT_FOUND = -5

COINES_E_UNABLE_CLAIM_INTERFACE = -6

COINES_E_MEMORY_ALLOCATION = -7

COINES_E_NOT_SUPPORTED = -8

COINES_E_NULL_PTR = -9

COINES_E_COMM_WRONG_RESPONSE = -10

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 131 | 131

COINES_E_SPI16BIT_NOT_CONFIGURED = -11

COINES_E_SPI_INVALID_BUS_INTERFACE = -12

COINES_E_SPI_CONFIG_EXIST = -13

COINES_E_SPI_BUS_NOT_ENABLED = -14

COINES_E_SPI_CONFIG_FAILED = -15

COINES_E_I2C_INVALID_BUS_INTERFACE = -16

COINES_E_I2C_BUS_NOT_ENABLED = -17

COINES_E_I2C_CONFIG_FAILED = -18

COINES_E_I2C_CONFIG_EXIST = -19

COINES_E_TIMER_INIT_FAILED = -20

COINES_E_TIMER_INVALID_INSTANCE = -21

COINES_E_TIMER_CC_CHANNEL_NOT_AVAILABLE = -22

COINES_E_EEPROM_RESET_FAILED = -23

COINES_E_EEPROM_READ_FAILED = -24

COINES_E_INIT_FAILED = -25

COINES_E_STREAM_NOT_CONFIGURED = -26

COINES_E_STREAM_INVALID_BLOCK_SIZE = -27

COINES_E_STREAM_SENSOR_ALREADY_CONFIGURED = -28

COINES_E_STREAM_CONFIG_MEMORY_FULL = -29

COINES_E_INVALID_PAYLOAD_LEN = -30

COINES_E_CHANNEL_ALLOCATION_FAILED = -31

COINES_E_CHANNEL_DE_ALLOCATION_FAILED = -32

COINES_E_CHANNEL_ASSIGN_FAILED = -33

COINES_E_CHANNEL_ENABLE_FAILED = -34

COINES_E_CHANNEL_DISABLE_FAILED = -35

COINES_E_INVALID_PIN_NUMBER = -36

COINES_E_MAX_SENSOR_COUNT_REACHED = -37

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 132 | 131

COINES_E_EEPROM_WRITE_FAILED = -38

COINES_E_INVALID_EEPROM_RW_LENGTH = -39

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 133 | 131

101FAQ

101.11. I want to upgrade APP2.0/APP3.0 firmware.

· Use app20-flash tool (or) Development Desktop to upgrade APP2.0 firmware.
· Use dfu-util tool to upgrade APP3.0 firmware.

101.22. Why GCC is chosen as the compiler?

GCC is widely used and available in both Linux and Windows environments. However, if the user uses a different
compiler, it should be easy to migrate the code, since no compiler-specific tweaks are needed.

101.33. Why do you use TDM-GCC in Windows?

It is a complete toolchain in a single installer, but does not come with too much overhead the COINES user most likely
does not need. The installation procedures for other toolchains are more complicated and especially for in-experienced
users difficult to handle.

101.44. Why do you use mingw32-make in Windows?

It comes as a part of TDM-GCC package and can handle Windows path names better compared e.g. with MSYS make.
The usage of spaces in path names can be overcome using 8.3 naming format.

101.55. What to do in case of any communication or initialization failure
while running examples?

Resetting or rebooting the board will help solving this.

101.66. What does 'app_switch' tool do?

'app_switch' tool can command the Application Board to jump to a specified address on RAM or FLASH. It works only
with APP2.0 firmware v3.1 or later. COINES uses this feature to jump to USB DFU Bootloader or example application.

101.77. Are libraries provided by microcontroller vendor used for COINES
on MCU implementation ?

Yes ! ASF v3.42 (Advanced Software Framework) and nRF5 SDK v15.2 is being used for APP2.0 and APP3.0. One
can download the latest version of libraries from the below links
· https://www.microchip.com/mplab/avr-support/advanced-software-framework

· https://developer.nordicsemi.com/nRF5_SDK/

101.88. How is the binary file from PC downloaded to RAM or Flash
memory of MCU?

USB DFU protocol and open-source 'dfu-util' is used.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

https://www.microchip.com/mplab/avr-support/advanced-software-framework
https://developer.nordicsemi.com/nRF5_SDK/

Bosch Sensortec | COINES SDK - CONFIDENTIAL 134 | 131

· USB DFU Specification - https://www.usb.org/sites/default/files/DFU_1.1.pdf
· dfu-util Homepage - http://dfu-util.sourceforge.net/

101.99. Why is there no output in my terminal application not stream data
after cross-compiling and downloading an example on the MCU?

The code example on the MCU waits until the serial port of the board is opened. However, opening the port is not
enough, the user has to ensure that also the DTR signal is set (this is required due to have higher compatibiliy among
different terminal applications).

101.1010. Why can some examples only be compiled for either PC or MCU
target?

· Examples which make use of APIs like coines_config_streaming, coines_read_stream_sensor_data etc., are
meant to work only on PC.

· Use of APIs like coines_attach_interrupt in example will make it only compatible with MCU.

· Constraints can also be introduced by the use of POSIX C library. Eg:Functions from time.h, pthread.h, etc.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

https://www.usb.org/sites/default/files/DFU_1.1.pdf
http://dfu-util.sourceforge.net/

Bosch Sensortec | COINES SDK - CONFIDENTIAL 135 | 131

102Legal disclaimer

102.1Engineering samples

Engineering Samples are marked with an asterisk (∗), (E) or (e). Samples may vary from the valid technical specifications
of the product series contained in this data sheet. They are therefore not intended or fit for resale to third parties or for
use in end products. Their sole purpose is internal client testing. The testing of an engineering sample may in no way
replace the testing of a product series. Bosch Sensortec assumes no liability for the use of engineering samples. The
Purchaser shall indemnify Bosch Sensortec from all claims arising from the use of engineering samples.

102.2Product use

Bosch Sensortec products are developed for the consumer goods industry. They may only be used within the parameters
of this product data sheet. They are not fit for use in life-sustaining or safety-critical systems. Safety-critical systems are
those for which a malfunction is expected to lead to bodily harm, death or severe property damage. In addition, they
shall not be used directly or indirectly for military purposes (including but not limited to nuclear, chemical or biological
proliferation of weapons or development of missile technology), nuclear power, deep sea or space applications (including
but not limited to satellite technology).
The resale and/or use of Bosch Sensortec products are at the purchaser’s own risk and his own responsibility. The
examination of fitness for the intended use is the sole responsibility of the purchaser.
The purchaser shall indemnify Bosch Sensortec from all third party claims arising from any product use not covered by
the parameters of this product data sheet or not approved by Bosch Sensortec and reimburse Bosch Sensortec for all
costs in connection with such claims.
The purchaser accepts the responsibility to monitor the market for the purchased products, particularly with regard to
product safety, and to inform Bosch Sensortec without delay of all safety-critical incidents.

102.3Application examples and hints

With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the
application of the device, Bosch Sensortec hereby disclaims any and all warranties and liabilities of any kind, including
without limitation warranties of non-infringement of intellectual property rights or copyrights of any third party. The
information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. They
are provided for illustrative purposes only and no evaluation regarding infringement of intellectual property rights or
copyrights or regarding functionality, performance or error has been made.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 136 | 131

103Legal disclaimer

i. Engineering samples

Engineering samples are marked with an asterisk (*), (E) or (e). Samples may vary from the valid technical specifications
of the product series contained in this data sheet. They are therefore not intended or fit for resale to third parties or for
use in end products. Their sole purpose is internal client testing. The testing of an engineering sample may in no way
replace the testing of a product series. Bosch Sensortec assumes no liability for the use of engineering samples. The
purchaser shall indemnify Bosch Sensortec from all claims arising from the use of engineering samples.

ii. Product use

Bosch Sensortec products are developed for the consumer goods industry. They may only be used within the parame-
ters of this product data sheet. They are not fit for use in life-sustaining or safety-critical systems. Safety-critical systems
are those for which a malfunction is expected to lead to bodily harm, death or severe property damage. In addition,
they shall not be used directly or indirectly for military purposes (including but not limited to nuclear, chemical or bio-
logical proliferation of weapons or development of missile technology), nuclear power, deep sea or space applications
(including but not limited to satellite technology).

Bosch Sensortec products are released on the basis on the legal and normative requirements relevant to the Bosch
Sensortec product for use in the following geographical target market: BE, BG, DK, DE, EE, FI, FR, GR, IE, IT, HR, LV,
LT, LU, MT, NL, AT, PL, PT, RO, SE, SK, SI, ES, CZ, HU, CY, US, CN, JP, KR, TW. If you need further information or
have further requirements, please contact your local sales contact.

The resale and/or use of Bosch Sensortec products are at the purchasers own risk and his own responsibility. The
examination of fitness for the intended use is the sole responsibility of the purchaser.

The purchaser shall indemnify Bosch Sensortec from all third party claims arising from any product use not covered by
the parameters of this product data sheet or not approved by Bosch Sensortec and reimburse Bosch Sensortec for all
costs in connection with such claims.

The purchaser accepts the responsibility to monitor the market for the purchased products, particularly with regard to
product safety, and to inform Bosch Sensortec without delay of all safety-critical incidents.

iii. Application examples and hints

With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding
the application of the device, Bosch Sensortec hereby disclaims any and all warranties and liabilities of any kind,
including without limitation warranties of non-infringement of intellectual property rights or copyrights of any third party.
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics.
They are provided for illustrative purposes only and no evaluation regarding infringement of intellectual property rights
or copyrights or regarding functionality, performance or error has been made.

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec | COINES SDK - CONFIDENTIAL 137 | 131

104Document History and Modifications
Rev. No. Chapter Description Date

0.1 - Initial version 2023-02
0.2 chapter X minor example changes 2023-03

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

Bosch Sensortec GmbH
Gerhard-Kindler-Strasse 9
72770 Reutlingen / Germany

contact@bosch-sensortec.com
www.bosch-sensortec.com

Modifications reserved
Preliminary - specifications subject to change without notice
Document number: BST-DHW-AN013
Confidential and under NDA

Modifications reserved | Data subject to change without notice Document number: BST-DHW-AN013

	1 Data Protection Notice
	1.1 BST respects your privacy
	1.2 Controller
	1.3 Collection, processing and usage of personal data
	1.4 User Rights
	1.5 Right to lodge complaint with supervisory authority:
	1.6 Changes to the Data Protection Notice
	1.7 Contact
	1.8 Effective date

	2 Introduction
	3 Introduction to COINES
	4 Running examples on PC side
	5 Running examples directly on the MCU of the Application board
	6 COINES on Nicla Sense ME
	7 System requirements
	8 Installation of COINES
	9 Installation of compiler environment
	10 Installation of COINES
	11 Installation of compiler environment
	12 Compiling and executing code (command line)
	13 Cross compiling and downloading example to Application Board's microcontroller
	14 Cross compiling and downloading example to Nicla Sense ME's microcontroller
	15 Eclipse project for examples
	15.1 Build project
	15.2 Debug project

	16 Overview of PC side implementation of COINES
	17 GPIO mapping of APP2.0 shuttle board pins
	18 GPIO mapping of APP3.0 shuttle board pins
	19 coines_open_comm_intf
	20 coines_close_comm_intf
	21 coines_get_board_info
	22 coines_set_pin_config
	23 coines_get_pin_config
	24 coines_set_shuttleboard_vdd_vddio_config
	25 coines_config_i2c_bus
	26 coines_config_spi_bus
	27 coines_config_i2s_bus
	28 coines_deconfig_spi_bus
	29 coines_deconfig_i2c_bus
	30 coines_deconfig_i2s_bus
	31 coines_write_i2c
	32 coines_read_i2c
	33 coines_i2c_set
	34 coines_i2c_get
	35 coines_write_spi
	36 coines_read_spi
	37 coines_config_word_spi_bus
	38 coines_write_16bit_spi
	39 coines_read_16bit_spi
	40 coines_delay_msec
	41 coines_delay_usec
	42 coinesAPI calls: Streaming feature
	43 coines_config_streaming
	44 coines_start_stop_streaming
	45 coines_read_stream_sensor_data
	46 coines_trigger_timer
	47 coines_get_millis
	48 coines_get_micro_sec
	49 coines_attach_interrupt
	50 coines_detach_interrupt
	51 coines_intf_available
	52 coines_intf_connected
	53 coines_flush_intf
	54 coines_read_intf
	55 coines_write_intf
	56 coines_get_version
	57 coines_soft_reset
	58 coines_read_temp_data
	59 coines_read_bat_status
	60 coines_ble_config
	61 coines_set_led
	62 coines_timer_config
	63 coines_timer_deconfig
	64 coines_timer_start
	65 coines_timer_stop
	66 coines_get_realtime_usec
	67 coines_delay_realtime_usec
	68 coines_attach_timed_interrupt
	69 coines_detach_timed_interrupt
	70 coines_echo_test
	71 coines_shuttle_eeprom_write
	72 coines_shuttle_eeprom_read
	73 coines_yield
	74 coines_execute_critical_region
	75 coines_scan_ble_devices
	76 Simple data logging
	77 Data plotting and visualization
	78 Media Transfer Protocol (MTP) firmware for Application Board 3.0
	79 Switching to MTP mode
	80 Copying the files using MTP
	81 USB/BLE DFU bootloader
	82 USB DFU
	83 BLE DFU
	84 Invoking the Bootloader
	84.1 APP3.0 Board
	84.2 Nicla Sense ME Board

	85 Using the Bootloader via USB
	86 Using the Bootloader via BLE
	87 Updating bootloader
	87.1 App3.0 Board
	87.2 Nicla Sense ME Board

	88 Updating DD firmware
	89 Updating MTP firmware
	90 Updating Coines Bridge firmware on Nicla Sense ME Board
	91 Introduction to <tt>coinespy</tt> library
	92 Installation
	93 coinespy API description
	94 coinespy API calls: Interface and board information
	94.1 open_comm_interface
	94.2 close_comm_interface
	94.3 get_board_info
	94.4 scan_ble_devices
	94.5 echo_test

	95 coinespy API calls: GPIO oriented calls
	95.1 set_pin_config
	95.2 get_pin_config
	95.3 set_shuttleboard_vdd_vddio_config
	95.4 set_vdd
	95.5 set_vddio

	96 coinespy API calls: Sensor communication
	96.1 config_i2c_bus
	96.2 config_spi_bus
	96.3 deconfig_i2c_bus
	96.4 deconfig_spi_bus
	96.5 write_i2c
	96.6 read_i2c
	96.7 write_spi
	96.8 read_spi
	96.9 config_word_spi_bus
	96.10 write_16bit_spi
	96.11 read_16bit_spi
	96.12 delay_milli_sec
	96.13 delay_micro_sec

	97 coinespy API calls: Streaming feature
	97.1 config_streaming
	97.2 start_stop_streaming
	97.3 read_stream_sensor_data

	98 coinespy API calls: Other useful APIs
	99 Definiton of constants
	99.1 PinDirection
	99.2 PinValue
	99.3 CommInterface
	99.4 I2CMode
	99.5 SPISpeed
	99.6 SPITransferBits
	99.7 SPIMode
	99.8 MultiIOPin
	99.9 SensorInterface
	99.10 I2CBus
	99.11 SPIBus
	99.12 PinInterruptMode
	99.13 StreamingMode
	99.14 StreamingState
	99.15 SamplingUnits

	100 Error Codes
	100.1 General Error Codes

	101 FAQ
	101.1 1. I want to upgrade APP2.0/APP3.0 firmware.
	101.2 2. Why GCC is chosen as the compiler?
	101.3 3. Why do you use TDM-GCC in Windows?
	101.4 4. Why do you use mingw32-make in Windows?
	101.5 5. What to do in case of any communication or initialization failure while running examples?
	101.6 6. What does 'app_switch' tool do?
	101.7 7. Are libraries provided by microcontroller vendor used for COINES on MCU implementation ?
	101.8 8. How is the binary file from PC downloaded to RAM or Flash memory of MCU?
	101.9 9. Why is there no output in my terminal application not stream data after cross-compiling and downloading an example on the MCU?
	101.10 10. Why can some examples only be compiled for either PC or MCU target?

	102 Legal disclaimer
	102.1 Engineering samples
	102.2 Product use
	102.3 Application examples and hints

	103 Legal disclaimer
	104 Document History and Modifications

